(x^2+x(y^3))dx+(5(y^2)-xy+(y^3)siny)dy=0

Simple and best practice solution for (x^2+x(y^3))dx+(5(y^2)-xy+(y^3)siny)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+x(y^3))dx+(5(y^2)-xy+(y^3)siny)dy=0 equation:


Simplifying
(x2 + x(y3)) * dx + (5(y2) + -1xy + (y3) * siny) * dy = 0

Multiply x * y3
(x2 + xy3) * dx + (5(y2) + -1xy + (y3) * siny) * dy = 0

Reorder the terms:
(xy3 + x2) * dx + (5(y2) + -1xy + (y3) * siny) * dy = 0

Reorder the terms for easier multiplication:
dx(xy3 + x2) + (5(y2) + -1xy + (y3) * siny) * dy = 0
(xy3 * dx + x2 * dx) + (5(y2) + -1xy + (y3) * siny) * dy = 0
(dx2y3 + dx3) + (5(y2) + -1xy + (y3) * siny) * dy = 0

Multiply y3 * insy
dx2y3 + dx3 + (5y2 + -1xy + insy4) * dy = 0

Reorder the terms:
dx2y3 + dx3 + (insy4 + -1xy + 5y2) * dy = 0

Reorder the terms for easier multiplication:
dx2y3 + dx3 + dy(insy4 + -1xy + 5y2) = 0
dx2y3 + dx3 + (insy4 * dy + -1xy * dy + 5y2 * dy) = 0
dx2y3 + dx3 + (dinsy5 + -1dxy2 + 5dy3) = 0

Reorder the terms:
dinsy5 + -1dxy2 + dx2y3 + dx3 + 5dy3 = 0

Solving
dinsy5 + -1dxy2 + dx2y3 + dx3 + 5dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(insy5 + -1xy2 + x2y3 + x3 + 5y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(insy5 + -1xy2 + x2y3 + x3 + 5y3)' equal to zero and attempt to solve: Simplifying insy5 + -1xy2 + x2y3 + x3 + 5y3 = 0 Solving insy5 + -1xy2 + x2y3 + x3 + 5y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1insy5' to each side of the equation. insy5 + -1xy2 + x2y3 + x3 + -1insy5 + 5y3 = 0 + -1insy5 Reorder the terms: insy5 + -1insy5 + -1xy2 + x2y3 + x3 + 5y3 = 0 + -1insy5 Combine like terms: insy5 + -1insy5 = 0 0 + -1xy2 + x2y3 + x3 + 5y3 = 0 + -1insy5 -1xy2 + x2y3 + x3 + 5y3 = 0 + -1insy5 Remove the zero: -1xy2 + x2y3 + x3 + 5y3 = -1insy5 Add 'xy2' to each side of the equation. -1xy2 + x2y3 + x3 + xy2 + 5y3 = -1insy5 + xy2 Reorder the terms: -1xy2 + xy2 + x2y3 + x3 + 5y3 = -1insy5 + xy2 Combine like terms: -1xy2 + xy2 = 0 0 + x2y3 + x3 + 5y3 = -1insy5 + xy2 x2y3 + x3 + 5y3 = -1insy5 + xy2 Add '-1x2y3' to each side of the equation. x2y3 + x3 + -1x2y3 + 5y3 = -1insy5 + xy2 + -1x2y3 Reorder the terms: x2y3 + -1x2y3 + x3 + 5y3 = -1insy5 + xy2 + -1x2y3 Combine like terms: x2y3 + -1x2y3 = 0 0 + x3 + 5y3 = -1insy5 + xy2 + -1x2y3 x3 + 5y3 = -1insy5 + xy2 + -1x2y3 Add '-1x3' to each side of the equation. x3 + -1x3 + 5y3 = -1insy5 + xy2 + -1x2y3 + -1x3 Combine like terms: x3 + -1x3 = 0 0 + 5y3 = -1insy5 + xy2 + -1x2y3 + -1x3 5y3 = -1insy5 + xy2 + -1x2y3 + -1x3 Add '-5y3' to each side of the equation. 5y3 + -5y3 = -1insy5 + xy2 + -1x2y3 + -1x3 + -5y3 Combine like terms: 5y3 + -5y3 = 0 0 = -1insy5 + xy2 + -1x2y3 + -1x3 + -5y3 Simplifying 0 = -1insy5 + xy2 + -1x2y3 + -1x3 + -5y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| x^4+2x^3+23x^2-48x+20=0 | | -17=5+7(h-3) | | 7x^4+1=0 | | 2(x-4)=4(1+2x) | | -9r-3r=34 | | 4-7f=f-12 | | -21=3b-9b | | 23=-9(4f-6) | | -6n-12=n+4+n | | 4(t+5)=15 | | -2x^3+5x^2-1=0 | | 4x+2-6=36 | | -3(x+6)+6=7(x+2)+8 | | 12-5h=h+6 | | -4x+2+5x=28 | | 5-2y=-9 | | 52=p+4 | | -9-6(1-5k)=33 | | 7z-3+5=-29 | | 9r^2+18r-24=0 | | -4(2-5y)=-29 | | t-27=4t | | -18=16t | | 1+178-6+4= | | 6n-7=9 | | 45-3.5=27.5-x | | x+3x+5=73 | | .25x-3=37.5x+4 | | 40x^2-44x+11=0 | | x^2+3=x+9 | | 0.03+0.12(x+50)=3 | | 9x+12=9x-16 |

Equations solver categories